Bimal K. Sinha

  • An accessible introduction to performing meta-analysis across various areas of researchThe practice of meta-analysis allows researchers to obtain findings from various studies and compile them to verify and form one overall conclusion. Statistical Meta-Analysis with Applications presents the necessary statistical methodologies that allow readers to tackle the four main stages of meta-analysis: problem formulation, data collection, data evaluation, and data analysis and interpretation. Combining the authors' expertise on the topic with a wealth of up-to-date information, this book successfully introduces the essential statistical practices for making thorough and accurate discoveries across a wide array of diverse fields, such as business, public health, biostatistics, and environmental studies.Two main types of statistical analysis serve as the foundation of the methods and techniques: combining tests of effect size and combining estimates of effect size. Additional topics covered include:Meta-analysis regression proceduresMultiple-endpoint and multiple-treatment studiesThe Bayesian approach to meta-analysisPublication biasVote counting proceduresMethods for combining individual tests and combining individual estimatesUsing meta-analysis to analyze binary and ordinal categorical dataNumerous worked-out examples in each chapter provide the reader with a step-by-step understanding of the presented methods. All exercises can be computed using the R and SAS software packages, which are both available via the book's related Web site. Extensive references are also included, outlining additional sources for further study.Requiring only a working knowledge of statistics, Statistical Meta-Analysis with Applications is a valuable supplement for courses in biostatistics, business, public health, and social research at the upper-undergraduate and graduate levels. It is also an excellent reference for applied statisticians working in industry, academia, and government.

  • An advanced discussion of linear models with mixed or random effects. In recent years a breakthrough has occurred in our ability to draw inferences from exact and optimum tests of variance component models, generating much research activity that relies on linear models with mixed and random effects. This volume covers the most important research of the past decade as well as the latest developments in hypothesis testing. It compiles all currently available results in the area of exact and optimum tests for variance component models and offers the only comprehensive treatment for these models at an advanced level. Statistical Tests for Mixed Linear Models: Combines analysis and testing in one self-contained volume. Describes analysis of variance (ANOVA) procedures in balanced and unbalanced data situations. Examines methods for determining the effect of imbalance on data analysis. Explains exact and optimum tests and methods for their derivation. Summarizes test procedures for multivariate mixed and random models. Enables novice readers to skip the derivations and discussions on optimum tests. Offers plentiful examples and exercises, many of which are numerical in flavor. Provides solutions to selected exercises. Statistical Tests for Mixed Linear Models is an accessible reference for researchers in analysis of variance, experimental design, variance component analysis, and linear mixed models. It is also an important text for graduate students interested in mixed models.

empty